Enhancing In-Flight Transoceanic Communications Using Swift-64 Packet Mode Service

Rich Slywczak
NASA/Glenn Research Center (GRC)
Satellite Networks and Architectures Branch (5610)

4th Annual ICNS Conference April 28, 2004

Introduction

- WINCOMM
 - Develop advanced communications technologies
 - Timely and efficient dissemination of weather information
- Transoceanic Scenario
 - Focus on international flights over the ocean
 - Communications are limited to HF spectrum
 - Minimal enroute weather information collection and dissemination
 - Flight testing by mid-2005
- Overall Goal: Employ satellite-based communications to provide weather information to the cockpit using packet mode delivery service and efficiently share the same link with cabin data.

Updating the Communications Architecture

- What are the current capabilities -
 - Communications via circuit-switching
 - Dedicated communications path and allocated bandwidth
 - Existing data links transport small, low volume messages.
- Future Capabilities
 - Convert existing systems to use satellite communications and packet-mode service.
 - Use commercially available services and standard protocols.
 - Efficiently and effectively separate cabin and cockpit data from shared link.
 - Provide advanced data products.

Data Products

- Turbulence Data
 - Disseminate to other aircraft or ground.
 - Receive and display warnings to the cockpit from other aircraft.
- Graphical Weather Products
 - Receive, process and display weather products.
- Cockpit Warnings and Alerts
 - Receive, process and display warning and alerts.
- Air Traffic Control (ATC) Data.
 - Receive and process ATC information from ground stations.
 - Verify that ATC information can be transferred reliablely and securely.

Transoceanic Scenario Architecture

Glenn Research Center

Research Issues

- Quality of Service (QoS)
 - Cockpit data must maintain a higher level of priority than the cabin data
 - Differentiate between cabin data, weather data or ATC data.
 - Determine changes to router OS for QoS and determine how effectively the OS handles QoS.
- Link Availability
 - Must maintain communications with the cockpit at all times.
 - Determine if INMARSAT/Swift-64 coverage is extensive enough to cover the majority of the flight patterns.
 - Determine if ground networks be relied upon for cheaper content delivery.
- Security
 - Protect the shared link from unauthorized users.
 - Apply lessons learned from the terrestrial Internet.
 - Application of security devices (e.g., encryptors, VPN, firewalls) to the on-board network.

Research Benefits

- Reduce Costs
 - IP-based Protocols
 - Take advantage of large body of researchers.
 - Commercial Services (SITA and INMARSAT)
 - Packet Mode Service Pay by amount of data transferred.
- Efficient Bandwidth Usage
 - Using Packet Mode Services
 - No Allocation of the Data Link.
 - Multiple Users can Share the same Link.
- Data Integrity and Reliability
 - Validate Data via Built-in Checksums
 - 16-bit Checksums may not be sufficient for ATC data.
 - Reliability via Acknowledgement Schemes
- Security
 - Leverage Terrestrial Security Scheme
 - Encryption, VPNs, IPSec, etc.

Testbed Architecture

at Lewis Field

High-Speed-Data SATCOM Transceiver

- HSD-128 Aeronautical High Speed Data Terminal
 - 2 64 kbps dual channel capacity for voice or data
 - Can be bonded together for 128 kbps
 - Interfaces
 - ISDN, 10-Base-T Ethernet and RS-232
 - Operates with any ARINC 741 compliant High-Gain Antenna
- Viper II
 - HSD-128 in a ruggedized, modular platform
 - Ideal for roll-on/roll-off airborne pallet for rapid deployment
 - All interfaces and configuration pins are accessible from rear panel.

Commercial Services

INMARSAT

- Worldwide network of ground stations and satellites.
- Swift-64
 - High-performance in-flight communications service.
- Two types of services
 - Mobile ISDN
 - Mobile Packet Data Services (MPDS)

SITA

- Provides INMARSAT/Swift-64 Service
- Extensive ground network
- Partner of INMARSAT
- EMS
 - Develops and markets the HSD-128 transceiver.

INMARSAT Coverage

Glenn Research Center

5/6/2004

11

Approach

- Phase I Investigation and Design
 - Requirements Definition
 - Design Candidate Architectures
 - Research QoS and Security Issues
 - Setup Testbed
- Phase II Implementation
 - Implement the Architectures in Testbed
 - Implement Parameter Changes
 - QoS
 - Security
- Phase III Flight Testing
 - Installed on NASA-owned aircraft
 - 757 stationed at Langley Research Center (LaRC)
 - Investigate New INMARSAT-4 Satellites

Conclusion

- Improve communications during transoceanic flights
 - Using packet mode service
 - Differentiate between cabin and cockpit data
 - Improved weather data products
- Validation and Testing
 - Using actual equipment in testbed
 - Flight Testing in mid-05
- Improved data products
 - Provide graphical weather products
 - Improved Turbulence Information
 - Cockpit Warnings/Alerts
 - Air Traffic Control data

Contact Information

Rich Slywczak

NASA/Glenn Research Center (GRC)

21000 Brookpark Road, MS 54-5

Cleveland, Oh 44135

Phone: 216.433.3493

e-mail: Richard.A.Slywczak@nasa.gov

Relevant Publications

"Enhancing In-Flight Transoceanic Communications Using Swift-64 Packet Mode Service"